Please Enter Keywords
资源 63
[Lecture] Quasi-local mass and geometry of scalar curvature
Nov. 26, 2022

Speaker: Prof. Shi Yuguang, Peking University

Time: 10:30-11:30 pm, November 25, 2022, GMT+8

Venue: Tecent Meeting ID: 520-112-012


Let (Σ^(n-1),γ) be an (n-1)-dimensional orientable Riemannian manifold, H be a positive function on Σ^(n-1), Gromov’s asked under what conditions γ is induced by a Riemannian metric g with nonnegative scalar curvature, for example, defined on Ω^n, and   H is the mean curvature of Σ in (Ω^n,g) with respect to the outward unit normal vector? By the recent result due to P. Miao we know such H cannot be too large, so the next natural question is what is “optimal” H so that such a fill-in for the triple (Σ^(n-1),γ,H) exits? It turns out that the problem has deep relation with positive mass theorem, in this talk I will talk about some known results relate to this topic. My talk is based on my joint works with Dr. Wang Wenlong, Dr.Wei Guodong,Dr. Zhu Jintian, Dr.Liu Peng, Dr. Hu Yuhao.

Source: SRMC